

Utilising real-time ship data to reduce fuel consumption and carbon emissions

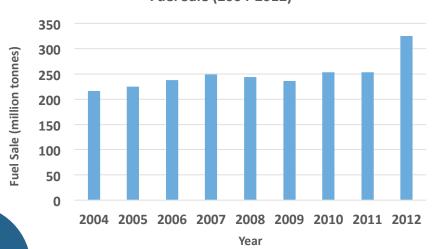
Shipping in Changing Climates Conference 2016

Newcastle upon Tyne, UK

10-11 November 2016

Ibna Zaman, Kayvan Pazouki and Rose Norman, School of Marine Science & Technology, Newcastle University, UK Shervin Younessi, Royston Ltd, Newcastle University, UK

Shirley Coleman, Industrial Statistics Research Unit, Newcastle University, UK



Shipping Industry Overview

- Shipping is the life blood of the global economy and responsible for the carriage of around 90% of trade.
- > The world's commercial fleet consists of around 90,000 vessels.
- In 2014, total global cargo carried 9.84 billion ton, an increase of 3.4% from 2013.

Fuel Sale (2004-2012)

The fuel demand estimated **to double by 2030** due to the increase in transport demand.

Ship Emissions

- Average annual totals of 20.9 million and 11.3 million tonnes for NOx (as NO2) and SOx (as SO2) from all shipping. (2007-2011)
- NOx and SOx emissions from all shipping represent about 15% and 13% of global totals.
- Responsible for 3% of global CO₂ emissions

Increase co₂ emissions 50%- 250% by 2050, depending on economic growth and global energy demand

Combustion emissions of SOx, NOx, PM, CO and NMVOCs are correlated with fuel consumption patterns, with some variability according to properties of combustion across engine types, fuel properties, etc.

Fuel consumption reduction methods

Operational

Weather routing **1-4%** Autopilot upgrade **1-3%** Speed reduction **10-30%**

Auxiliary power

Efficient pumps, fans **0-1%** High efficiency lighting **0-1%** Solar Panel **0-3%**

Aerodynamics

Air lubrication **5-15%** Wind engine **3-12%**

Thrust efficiency

Propeller polishing **3-8%** Propeller upgrade **1-3%** Prop/rudder retrofit **2-6%**

Engine efficiency

Waste heat recovery **6-8%** Engine control **0-1%** Engine common rail **0-1%** Engine speed de-rating **10-30%**

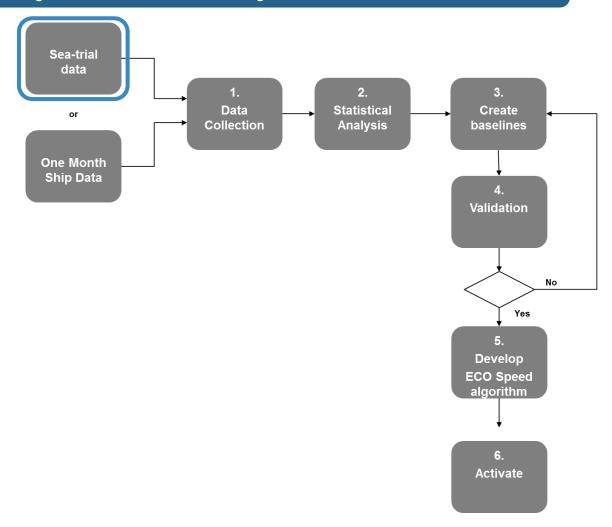
Hydrodynamics

Hull cleaning **1-10%** Hull coating **1-3%** Water flow optimisation **1-4%**

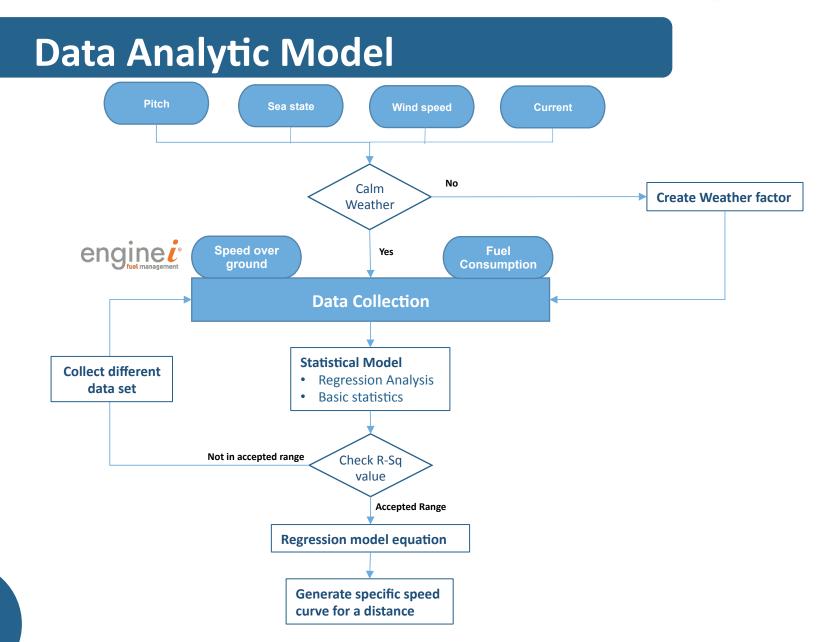
ECO Speed Project

The main aim is to identify the economical ship speed for the vessel by analysing the ship real-time data.

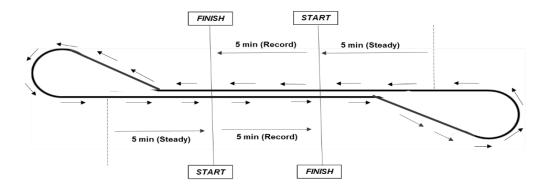
The OSV Specifications


Main Engines Shaft Generator Auxiliary Engines Emergency Generator Bow Thruster Stern Thruster Propeller 2 x MAK 8M25C 2500kW 2 x 1440 kW 3 x 585 kW 1 x 200 kW 2 x Berg 800 kW 2 x Berg 800 kW 2 x CPP

ECO Speed Development Process

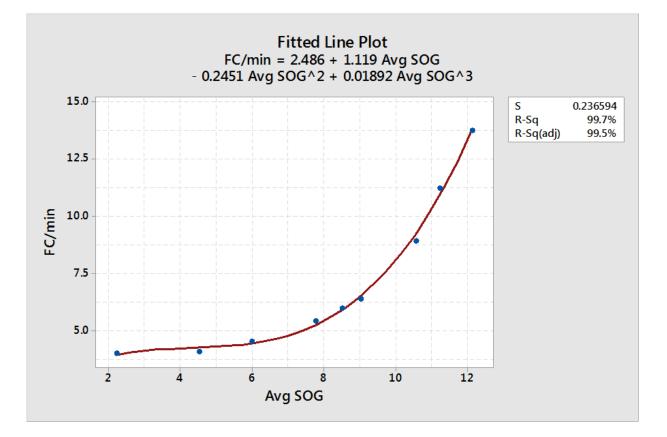

Figure: ECO Speed development process

Knowledge Transfer Partnerships



The OSV sea-trial

Pitch (%)	Avg. SOG (kn)	FC (kg/min)
95	12.13	13.75
85	11.24	11.23
75	10.57	8.92
60	9.02	6.41
57	8.5	5.99
50	7.78	5.43
35	5.99	4.55
25	4.52	4.10
10	2.23	4.20


Table: The OSV Sea-Trial (Full Engine Speed)

Regression Analysis

Fuel Con. vs Speed

Estimated Fuel Con. for voyage of 20 NM (calm weather condition)

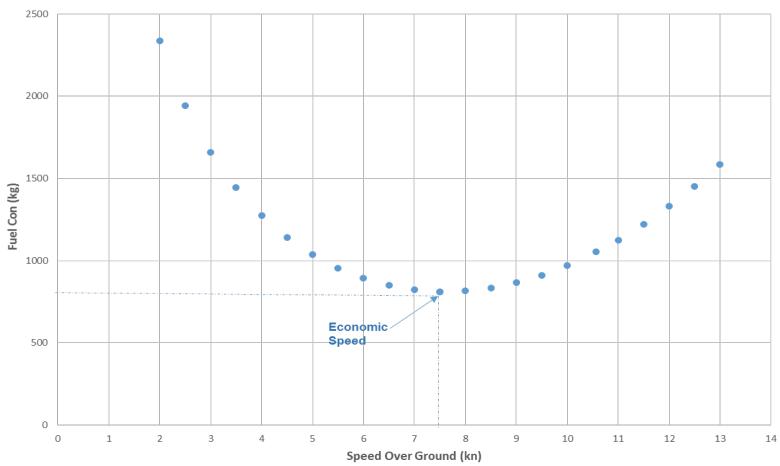


Figure: The estimated fuel consumption for different speed using regression equation

Knowledge Transfer Partnerships

	Speed Over Ground (kn)	Estimated Fuel Con/ min	Distance of 20 NM taken, Time (Hr)	Fuel Con-kg	Additional Fuel Consumed from ref. optimum speed, Fuel Con-Diff	Time Diff (min)	Fuel Con- Diff %
	3.5	4.21	5.71	1443.85	632.09	182.86	77.87
	4	4.25	5.00	1275.38	463.62	140.00	57.11
	4.5	4.28	4.44	1141.95	330.19	106.67	40.68
	5	4.32	4.00	1036.44	224.68	80.00	27.68
	5.5	4.37	3.64	954.34	142.58	58.18	17.56
	6	4.46	3.33	892.62	80.86	40.00	9.96
	6.5	4.60	3.08	849.22	37.46	24.62	4.61
	7	4.80	2.86	822.63	10.87	11.43	1.34
nomical Speed (Datum)	7.5	5.07	2.67	811.76	0.00	0.00	0.00
	8	5.44	2.50	815.80	4.04	-10.00	0.50
Crew Speed	8.5	5.91	2.35	834.11	22.35	-18.82	2.75
	9	6.50	2.22	866.21	54.45	-26.67	6.71
	9.5	7.22	2.11	911.72	99.96	-33.68	12.31
	10	8.09	2.00	970.32	158.56	-40.00	19.53
	10.57	9.27	1.89	1052.79	241.03	-46.47	29.69
	11	10.32	1.82	1125.86	314.10	-50.91	38.69
	11.5	11.71	1.74	1222.43	410.67	-55.65	50.59
	12	13.31	1.67	1331.34	519.58	-60.00	64.01
	12.5	15.13	1.60	1452.46	640.70	-64.00	78.93
	13	17.18	1.54	1585.69	773.93	-67.69	95.34

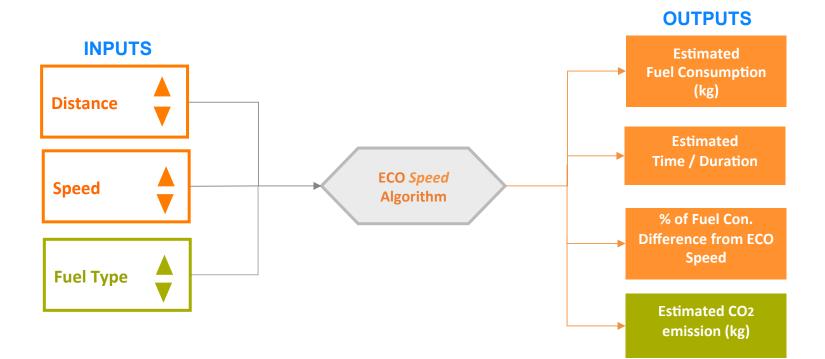
Economical Spee (Datum)

11

Tolerance and Accuracy

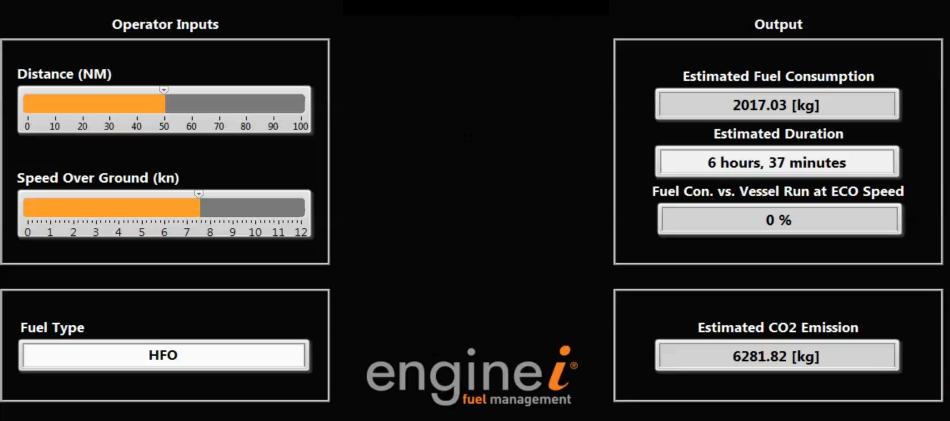
Item	Tolerance/Limits
Differences in time recorded by separate timing devices over a trial run	0.25%
Difference in total revolutions from separate revolution counters for a run	0.25%
Difference in RPM for each run from means for each speed point	0.20%
Difference in RPM of any shaft of multi-screw ship from the mean for a run provided the rated RPM for all shafts is the same	0.20%

Table: Trial tolerances and limits.


The ship performance parameters involve measurement of many fluctuating quantities. Each comes with an element of uncertainty. The accuracy of the optimum speed around 3% to 5%.

ECO Speed Model

13


ECO v1.1.vi

🔿 💽 🔲 II

ECO Speed Demo

2

Calm Weather Conditions

K

Summary

Applying the ECO Speed option enables a vessel to:

- □ Achieve on-time arrival
- □ Improve decision-making
- □ Increase operational predictability
- **Optimise time spent in Emissions Control Areas (ECA)**
- □ Monitor the vessel performance based on speed modelling

Thank You

-

-51